Easy domain and Hosting

Permanent short link for Go Daddy.com Just ez2.me
Spring Savings! $7.99 .com
Next time for Go Daddy: Easy to you just www.ez2.me Dadicated link for Go Daddy.com Just ez2.me

Friday, May 13, 2011

Working of Cloud chamber


Simple cloud chamber consists of the parts sealed environment, radioactive source (if you want to), dry ice or a cold plate and some kind of alcohol source (it has to allow easy evaporation)
Lightweight methyl alcohol vapour saturates the chamber. The alcohol falls as it cools down and the cold condenser provides a steep temperature gradient. The result is a supersaturated environment. The alcohol vapour condenses around ion trails left behind by the travelling ionizing particles. The result is cloud formation, seen in the cloud chamber by the presence of droplets falling down to the condenser. As particles pass through the chamber they leave ionization trails and because the alcohol vapour is supersaturated it condenses onto these trails. Since the tracks are emitted radially out from the source, their point of origin can easily be determined.
Just above the cold condenser plate there is an area of the chamber which is sensitive to radioactive tracks. At this height, most of the alcohol has not condensed. This means that the ion trail left by the radioactive particles provides an optimal trigger for condensation and cloud formation. This sensitive area is increased in height by employing a steep temperature gradient, little convection, and very stable conditions. A strong electric field is often used to draw cloud tracks down to the sensitive region of the chamber and increase the sensitivity of the chamber. While tracks from sources can still be seen without a voltage supply, background tracks are very difficult to observe. In addition, the voltage can also serve to prevent large amounts of "rain" from obscuring the sensitive region of the chamber,caused by condensation forming above the sensitive area of the chamber. This means that ion trails left by radioactive particles are obscured by constant precipitation. The black background makes it easier to observe cloud tracks.
Before tracks can be visible, a tangential light source is needed. This illuminates the white droplets against the black background. Drops should be viewed from a horizontal position. If the chamber is working correctly, tiny droplets should be seen condensing. Often this condensation is not apparent until a shallow pool of alcohol is formed at the condenser plate. The tracks become much more obvious once temperatures and conditions have stabilized in the chamber. This requires the elimination of any significant drift currents (poor chamber sealing)

No comments:

Post a Comment