Pages

Friday, May 13, 2011

Cloud seeding's history


Vincent Schaefer (1906–1993) discovered the principle of cloud seeding in July 1946 through a series of serendipitous events. Following ideas generated between himself and Nobel laureate Irving Langmuir while climbing Mt. Washington in New Hampshire, Schaefer, Langmuir's research associate, created a way of experimenting with supercooled clouds using a deep freeze unit of potential agents to stimulate ice crystal growth, i.e., salt, talcum powder, soils, dust and various chemical agents with minor effect. Then one hot and humid July 14, 1946, he wanted to try a few experiments at General Electric's Schenectady Research Lab. He was dismayed to find that the deep freezer was not cold enough to produce a "cloud" using breath air. He decided to move the process along by adding a chunk of dry ice just to lower the temperature of his experimental chamber. To his astonishment, as soon as he breathed into the deep freezer, a bluish haze was noted, followed by an eye-popping display of millions of microscopic ice crystals, reflecting the strong light rays from the lamp illuminating a cross-section of the chamber. He instantly realized that he had discovered a way to change supercooled water into ice crystals. The experiment was easily replicated and he explored the temperature gradient to establish the −40˚Climit for liquid water.
Within the month, Schaefer's colleague, the noted atmospheric scientist Dr. Bernard Vonnegut (brother of novelist Kurt Vonnegut) is credited with discovering another method for "seeding" supercooled cloud water. Vonnegut accomplished his discovery at the desk, looking up information in a basic chemistry text and then tinkering with silver and iodide chemicals to produce silver iodide. Together with Dr. Vonnegut, Professor Henry Chessin, SUNY Albany, a crystallographer, co-authored a publication in Science Magazine [17] and received a patent in 1975. Both methods were adopted for use in cloud seeding during 1946 while working for the General Electric Corporation in the state of New York. Schaefer's altered a cloud's heat budget, Vonnegut's altered formative crystal structure – an ingenious property related to a good match in lattice constant between the two types of crystal. (The crystallography of ice later played a role in Kurt Vonnegut's novel Cat's Cradle.) The first attempt to modify natural clouds in the field through "cloud seeding" began during a flight that began in upstate New York on 13 November 1946. Schaefer was able to cause snow to fall near Mount Greylock in western Massachusetts, after he dumped six pounds of dry ice into the target cloud from a plane after a 60-mile easterly chase from the Schenectady County Airport.
Dry ice and silver iodide agents are effective in changing the physical chemistry of supercooled clouds, thus useful in augmentation of winter snowfall over mountains and under certain conditions, and lightning and hail suppression. While not a new technique, hygroscopic seeding for enhancement of rainfall in warm clouds is enjoying a revival, based on some positive indications from research in South Africa, Mexico, and elsewhere. The hygroscopic material most commonly used is salt. It is postulated that hygroscopic seeding causes the droplet size spectrum in clouds to become more maritime (bigger drops) and less continental, stimulating rainfall through coalescence. From March 1967 until July 1972, the U.S. military's Operation Popeye cloud-seeded silver iodide to extend the monsoon season over North Vietnam, specifically the Ho Chi Minh Trail. The operation resulted in the targeted areas seeing an extension of the monsoon period an average of 30 to 45 days. The 54th Weather Reconnaissance Squadron carried out the operation to "make mud, not war.
In 1969 at the Woodstock Festival, various people claimed to have witnessed clouds being seeded by the U.S. military. This was said to be the cause of the rain which lasted throughout most of the festival.

No comments:

Post a Comment